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From the (automorphic) nature of nuclear permutational NMR spin symmetry established
in the 1980s, the SU(2)×Sn tensorial sets exhibit simple reducibility (SR) over their pattern
algebraic-based Liouvillian carrier space [F.P. Temme, Physica A 166 (1990) 676; 198 (1993)
245; Chem. Phys. 238 (1998) 245] for NMR. This underlies the quantum physical role of
the Sn group and its fundamental set of system invariants (SIs), i.e. beyond the Cartesian
SIs of [P.L. Corio, J. Magn. Reson. 134 (1998) 131]. Here we examine the outer-rank
dual-group tensorial subsets (over a {[λ̃]}(Sn) field) as standardised maximal forms for all
λ ` n: (λ < (n/2)) weakly-branched partitions. Techniques based on Schur functions (SFs)
“on a restricted subspace (RSS)”, classics in the Wybourne–Butler atomic physics tradition,
serve to highlight the central role of combinatorics in physics. Recursive use of the SFs/RSS
from the skew-diagonals of {|IM〉, . . . , |IM〉} square generates the rank-alone structure of
Liouville space from SR Sn decompositions of individual bipartite SF products. For high
enough n-indexed groups, the tensorial subsets exhibit maximal standard forms. Within a
total

(
2n
n

)
-fold space, the {T k(k1, k2, . . . , kn :Sn)} (k = kmax− i)th subdimensionalities are

governed by the related χ[2n−i,i]
12n (S2n) characters. The use of three separate combinatorial

algorithms yields the {∑
v

T k(v)→
{[

λ̃
]} ∣∣ p 6 22 part

}
maps as the origins of subsequent studies (of part II) on democratic invariants. A strong
case for the retention of Sn group in NMR has been made in our above-cited papers, in the
context of spin dynamics [B.C. Sanctuary and T.K. Halstead, Adv. Opt. Magn. Reson. 15
(1991) 197; and references therein], and by [J.J. Sullivan and T.H. Sidall-III, J. Phys. Chem.
96 (1992) 5789] for state-space. The present work relates specifically to NMR evolution
and to coherence transfer processes. Our understanding of spectral nuclear spin statistical
weights of uniform fermionic (bosonic) cage-isotopomers (as, e.g., in the ro-vibrational CNP
of 13Cn fullerenes) benefits from an appreciation of the dual group and its carrier space.
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1. Introduction

The structure of dual-group tensorial sets, beyond the original covariance prop-
erties given in Racah and Fano [22], or in the work by Coope on the (⊗SU(2))n

formalism [18] from 1970 (see also [1–7] cited in [18]), play a pivotal role in incor-
porating democratic methods [23,37] (rather than graph-theoretic approaches [41,33])
into physics. The former are based on certain underlying scalar invariants and of
pertinence to molecular ensemble-based quantum Liouville (QL) descriptions of NMR
spin dynamics [45], where the latter may include the physics of both evolution and in-
tracluster relaxation. Since the following discussion focuses on transformational prop-
erties associated with system invariants under the dual group, it also has pertinence
(for reasons stated below) for the Hilbert-space-based fermion (or boson) nuclear spin
statistical weighting properties [7] of highly symmetrical (here in the 3-space sense)
single-isotopomeric cage structures, a topic of much recent chemical interest.

In developing these conceptual ideas here, it is convenient to stress Liou-
ville space models under group actions, which underlie such transformational prop-
erties, for their explicit involvement of the dual group auxiliary invariant labels
of the quantum physics associated with carrier spaces. In contrast to [18], or to
the (Hilbert space) work of Lévy-Leblond and Lévy-Nahas [37], which both es-
sentially focus on few-body spin recoupling formalisms – and their relationship
to established (Sanctuary–)Jucys [33,41] graph theory (JGT) (of 1970s) – more
recent work [51,53–55,60,62] has sought to encompass truly n-body spin inter-
actions [9,10] governed by an extensive set of purely (SU(2)×)Sn scalar invari-
ants (SIs), as in papers [55,60]. This necessarily draws on certain essential as-
pects of quantum physics [9,10,17,42,48,49], which introduce the roles of carrier
spaces [9,10,53–55,60,62], as well as symmetry properties under GLn ⊃ · · · ⊃ Sn.
We stress that the structures of the former are rather more than simply classifi-
cations, on account of their inseparability from the essential invariant and trans-
formational physical properties. This is particularly the case for nuclear spin en-
semble problems. Naturally, in handling the scalar invariants of these spin en-
sembles one only needs to consider the SU(2) × Sn algebras and their group ac-
tions [54,55,60,62].

The wider SU(m) × Sn forms for the dual group constitute the most gen-
eral spectroscopic form; beyond the question of the nature of system SIs ad-
dressed here and in [62], these forms apply to higher-I nuclear spin (NS) prob-
lems over {k, q, v} labels [33,41,45], once one is concerned with details of spe-
cific dynamical NMR processes [42,45], from some known initial condition. Like-
wise, such dual symmetries determine the (Hilbert-space-based) spectral NS statis-
tical weights, via so-called complete nuclear permutation (CNP) effects [7] inher-
ent in isotopomeric (cage) ro-vibrational spectra. Naturally, the use of dual group
symmetry [9,10,53–55,60,62], which itself draws on various aspects of group struc-
ture [12,13,17,29,34–36,40,48,49,59,63,68,70] and of tensorial QL formalisms [33,
38,41–43,45,46], is less restricted than, e.g., the commonly utilised (but restricted)
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product, or |IM (. . .)〉〈IM (. . .)| “projective” descriptions of NMR (NQR) processes.
This is so on account the former being a general spectroscopic approach based on
{T kq{...}(v̄ = k1, . . . , kn)} recoupled bases, within which the {k, q}s, or outer rank and

z-projection entities, correspond directly to I ,M of the {|IM (i1, . . . , in)〉} Hilbert
basis. The distinctions [45] between tensorial and shift operator bases are impor-
tant.

The NMR dual-group tensorial techniques invoked in our 1990–1998 work [53,
55,60] rest on unitary (and Sn-Yamanouchi symbol-based [9]) projective boson map-
ping over (dual group) Liouvillian carrier space, as a product-space-based extention
to Biedenharn and Louck’s Hilbert space boson-algebraic formalisms [9,10] of the
early 1980s. The study of NMR evolution [3,14,19–21,24,30–32,38,43,45,46] (or of
intracluster relaxation, or coherence transfer [38]) for multiquantum, multispin systems
extends Sanctuary’s early theoretical work on QL-NMR (as covered in [33,41,42,45]),
which had utilised JGT recoupling methods in the context of density matrix formalisms,
e.g.,

σ ≡
kmax∑
k=0

k∑
q=−k

T kq(v)φkq (v). (1)

This is formulated here in terms of outer k, q multispin tensorial bases [38,42,43,45,46]
via standard graphical recoupling methods [33,41], in which the auxiliary v contains
v̄, {K̃}, which are obtained respectively from the local kis (constituting an inner field)
and the recoupling labels. Hence, one arrives at the following simple unitary-group-
based tensorial expressions, where the (i)k phase and (2I + 1)−1/2, (2k + 1)−1/2

normalising terms have been omitted for brevity:

Ykq ∼
∑
MM ′

(−1)k−q
(

I k I
−M q M ′

)
|IM〉

〈
IM ′

∣∣, (2)

for generalised projection formalisms based on single spin, and

T kq(v) ≡ |kqv〉〉 ∼
∑
q′q′′

(−1)k−q
(
k k′ k′′

−q q′ q′′

)
Yk′q′Yk′′q′′ (3)

(or more generally, T kq
K̃

(v̄ = (11, . . . , 1n)), now over some more generalised recoupling
graph-scheme for multispin-based tensors). Hence, it follows that the physical NMR
observables are simply the φkq (v) coherences (polarisations) obtained on evaluating
certain trace relationships, as, e.g., in

φkq (v) =
〈〈
T kq(v)

∣∣σ〉〉 ≡ tr
{(
T kq(v)

)†
σ
}

, (4)

which we shall return to later. It suffices in passing to note that conventional NMR
involves detecting the φ1

1 coherences, whereas other spin resonance techniques, such
as, e.g., nuclear acoustic resonance (NAR), detect the φ2

2, φ2
1 coherences.
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In the context of Balasubramanian’s approach to NMR spin symmetry [3] via
automorphisms (based on the equivalences inherent in the spin–spin interactions con-
stituting a network), papers [53,55,60] give a fuller understanding of the physical
significance of the idea of simple reducibility (SR), as it applies to the carrier space(s)
associated with SU(2) × Sn tensors and their auxiliary labels. Dual group projective
actions as Ũ×P(Sn) mappings derive from boson-pattern formalisms [9,54,55,60,62]
of {|IM (i1, . . . , in)〉} Hilbert space [10]. These ideas were extended in [55] to Liou-
ville space in order to establish the completeness of the following set, both as dual
group representations and as a definition of all possible transformations inherent in
the physical modelling. In the context of the completeness of projective mappings for
Liouville formalisms of spin dynamical NMR problems (see below), these sets over
the auxiliary v terms yield the following dual irreps:{

Dk(Ũ)× Γ̃[λ](v)(P)
∣∣ Ũ ∈ SU(2); Γ̃[λ](v), P ∈ Sn

}
. (5)

This comes about as a result of invoking the appropriate Ũ unitary group action and the
corresponding P(Sn) action (as realised via the use of Yamanouchi symbols [9]) over
the H̃ carrier space. Here from comparisons with [9,10], one notes that the additional
auxiliary v parameters of Γ̃[λ](v) are now explicit parameters of these Liouvillian
Ũ×P actions, and so inherent in the dual group projective mappings over the carrier
space H̃. Their role is to include all the underlying scalar invariants of the multispin
system in a systematic totally democratic (i.e. non-JGT) manner. Hence, from the
distinct auxiliary terms, now with both v̄ (as above) and – on replacing the K̃ simple
unitary recoupling terms (of [55]) by Ṽ – the corresponding democratic recoupling
components, the overall carrier space is found to span a set of (democratic labelled)
subspaces:

H̃ ≡
∑
v

H̃v. (6)

Naturally, this contains the required necessary and sufficient conditions for the retention
of SR in Liouville space, based on specific component democratic scalar invariants of
recent general expositions [55,60]. Some discussion of applications of carrier spaces
in quantum physics may be found in these papers. Since these auxiliary terms arise
from structures based on Sn induced democracy, they may be treated as arising from
the known (1987) properties of Yamanouchi Sn group chains (YGC) [17,48,49]. The
presentation in the subsequent work [62] develops ideas concerning specific indexed
S(n=12) YGC-hierarchies – i.e. as specifically derived from the present (superboson)
mappings onto the {[λ̃] | p 6 4} set.

In order to give actual examples of the nature of these democratic invariants
(cf. orthogonal forms of [20]), one first needs to cast the problem into a symbolic
algebraic combinatorial form [35], and then utilise the properties of Schur functions
(SFs) [12,13,68]. For generality, it is convenient to examine the rank-alone tensorial
structure (cf. [51]) and to focus on the k > (n/2) rank subspaces, i.e. of a sufficiently
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high n-indexed dual group to ensure that weak partitional branching will yield certain
forms of maximal mappings [59,63]. The present paper, with its focus on the generality
of the S12 [70] or Sn>12 algebras, utilises several of the general symbolic algorithms
of [35,40] and various standard theorems applicable to permutation groups [29,34,36],
in setting up the formalism for SU(2)×Sn mappings from a square on the full (outer)
{|IM (i1, . . . , in)〉} Hilbert space. Specific rank tensorial components arise from a sum
of products over some (minor) skew-diagonal. Certain bipartite SF products (SFPs)
and more general simple SF decompositions applied to the resultant structure then
yield the dual tensorial forms and their mappings onto Liouville space. Irrep sets of
the latter are denoted here with a tilde accent over the partition λ, as in {[λ̃]}. The
specifics of the different component SFP, or SF decompositions are given in section 2
below. The following paper [62] sets out concise descriptions via a reduction coeffi-
cent hierarchy for the various distinct scalar invariants, or v auxiliary labels, specific
to S12 dual tensors, by utilising the general YGC concepts of our 1998 work [60].
A description of the physical context to studies of NMR evolution (or intracluster
relaxation) involving permutation (over (k1, . . . , kn)) is given, for which dual tenso-
rial bases [38,43,46] are appropriate for strong intracluster (and conventionally weak
intercluster) interactions [3,14,19–21,24,30–32,38].

One arrives at a matrix-differential equation formalism [42,43,45,46], the quan-
tum Liouville equation (QLE), for −id(t)φ

k
q (v : [λ̃]), determined (over the [λ̃](Sn)

subspaces) by∑
k′′q′′v′′

〈〈
kqv :

[
λ̃
]∣∣L̂k′q′(v′ : [ñ])∣∣k′′q′′v′′ : [λ̃]〉〉φk′′q′′ (v′′ : [λ̃])(t = 0), (7)

where the experimental observables, the factored φkq (v : [λ̃]) coherences, are obtained
directly from the density matrix, with the use of some suitable initial condition [38].
The Liouvillians retain the automorphic permutational spin symmetry being “[λ̃ = ñ]
totally symmetric to zeroth order”

L̂ ≡
[
Ĥ intr

SC

([
ñ
])(0)

+ Ĥ intercl
1 : SC , ·

]
−, (8)

by virtue of one or other of the appropriate general forms [3,14,19–21,24,30–32] in-
volving weak {JAX , . . .}-based [Ĥ intercl.

1 : SC , ·]− (or similar isotropic dipolar) intercluster
terms. Alternatively for isotropic dipolar case, the Liouvillian becomes

L̂SC+IDD ≡
[
Ĥ intr

SC+IDD

([
ñ
])(0)

+ Ĥ intercl
1 : SC+IDD, ·

]
−, (9)

within which the intra-/intercluster relationships {JAA′, . . .}, {JXX′} � {JAX , . . .}
apply, or in the liquid crystalline media dipolar NMR case, involves a similar ordering
of the corresponding DAA′ , . . . ,DXX′, . . . , isotropic dipolar interactions [14,20]. In
passing, it is worthwhile recalling that it is the equivalence within the various reg-
ular networks of JAA′, JXX′ interactions which leads to the group automorphisms
originally introduced into NMR by Balasubramanian [3]. Since all the invariants and
time-reversal symmetries are already incorporated into the above dual group tensorial
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modelling of equation (7), it must represent all the transformational properties and
accessible physics inherent in this type of NMR spin problem. With the outer spin
(super)operators F2, Fz in explicit forms, as implied by F̂ =

∑n
i Îi, the question

of their [F̂•, [F̂ , ·]−]−, or [Fz , ·]− ≡ [
∑
Izi, ·]− actions and of the role of the scalar

(k1, . . . , kn) field term in defining good quantum numbers may be presented as in
equations (2)–(4) of [42]; paper [55] discusses these points also, in the context of
superbosons as superoperators. Since the form of these expressions and of the Liou-
villian F± ladder operators has been reported in earlier work [55,60], they are not
given here, for brevity.

A physical understanding of coherence transfer process was initially obtained by
Sanctuary [45] using analytic methods based on Laplace-transform techniques. Beyond
this AX system, the appropriate form of QLE incorporating symmetrised bases pro-
vides insight into the penultimate maximal multiquantum coherence transfer processes

φk=n−1
q=k (11, . . . , 1n : [ñ− 1, 1]) of the [A]2 and [A]3 spin systems [38,43,46]. Simi-

larly the multiquantum multispin coherences of higher ensemble S4 ↓ D2 spin systems
have been examined, e.g., in a 1998 liquid-crystal solvent media high-resolution NMR
studies [14]. Here the appropriate Liouvillian contains both intracluster (ring, or mole-
cular) DAA′ , DXX′ , . . . isotropic dipolar and JAA′ , JXX′ , . . . scalar couplings. In a
recent NMR symmetry treatment of invariants [20], Corio has extended various earlier
(orthogonal-group-based) views of NMR spin symmetry over {|IM (i1, . . . , in) : [λ]〉}
space [19,21,24,30–32]. However, no mention was made in [20] of either the automor-
phic nature of spin symmetry [3], or indeed of the Sn group – the latter is a curious
omission, since all the common spectroscopic finite groups are subgroups of the sym-
metric group by virtue of Cayley’s theorem [17], indicated in subduction hierarchy of
equation (14a) below. Inclusion of the Sn group in NMR spin symmetry is a direct
consequence of the use of nuclear spin permuational automorphisms [19,21,24,30–32]
in the 1980s, ideas which apply equally to CNP statistical-weight-based properties.
Indeed, this is the essential property that allows (Liouvillian) NMR to be treated via
the dual group quantum physics of quasiparticles [9,10] and its associated mapping
techniques [53,55,60] over Liouville space.

Specific details of the nature of [A] ≡ [13C]n and certain [AX]n (bi-)cluster
statistical weights have been given in the work of Balasubramanian [4,5,7,8] and oth-
ers [26,56–58,61,66]. Indeed, one of the earliest [8] of these ro-vibrational spectral
studies [4,5,8,58,61] mentions the spin statistical weights of the simple [H]12 spin clus-
ter, over SU(2)×S12, as a component of the full 12-fold borohydride anion. However,
this work did not refer explicitly to the underlying χ[λ](S12) group characters [70].
Since neither S12 ↓ I , nor S20 ↓ I constitute Cayley criteria embeddings, the state-
space enumerations of the corresponding [11B]12 and [10B]12 (SU(m)) monoclusters
are of some specific interest [58,61] in the context of their mathematical determinacy
for the group embeddings associated with cage isotopomers. Universal mathematical
determinacy of S12 ↓ I natural embeddings was established [61] from the complete-
ness of the unique 1 : 1 bijective subductional mapping. The pertinence of this result to
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ro-vibrational spectroscopy is a consequence of the total spin/orbital symmetry being
physically constrainted [4,7] by the following criteria:

Γspin(CNP)× Γorbit(O(3) ↓ G
)
∼
{
A2,
A1,

(10)

for uniform fermion (boson) particles, respectively. For other examples of the spec-
troscopic impact of CNP statistics, the reader is referred to a couple of review arti-
cles [4,56] and certain CNP-based works [26,57,66], which retain the Sn group in their
discussion of Sn ↓ G natural embedding processes, in preference to utilising O(3) ↓ G
notation; of course, vibrational spectroscopy [1,26,27] is the natural domain of the
orthogonal group chain.

There is no direct analogy between CNP cage/ring isotopomers properties and
deceptive NMR of ring-molecules, which occurs in ensemble NMR when one or
other of the inter-cluster spin interactions are of a significant magnitude, compared
to the intracluster sets of couplings. The CNP spin statistics is taken over equivalent
set(s) of quasi-polyhedral vertex points associated with each distinct set of uniform
fermions/bosons.

The present work is structured as follows. Section 2 sets out the basis of the
symbolic algebraic modelling, for tensorial sets based on Schur functions (SFs) and
particularly on SF products (SFPs). This treats individual SFP on “restricted spaces”
within the context of the role of GLn subgroups. Equations (12)–(15) set out the indi-
vidual SFP decompositions on Sn SF space. Section 3 utilises these results in context
of certain (minor) skew-diagonal sums of figure 1 to evaluate all the k > (n/2) (max-
imal) mappings, which are then shown (in section 4) to be amenable to factorisation
into subsets, corresponding to the invariant-based H̃v carrier subspaces. Section 5
briefly discusses our conceptual results as they relate to both fundamental theory and
to use of the symmetric group in modern NMR and CNP studies. However, the distinct
Sn-democratic invariants themselves, via a somewhat lengthy hierarchical process over
Sn−1 ⊃ · · · ⊃ Sn−i ⊃ · · · ⊃ S2 subgroups, and their quantum physics are the subject
of a subsequent paper [62]. Various ancillary points of detail in the symbolic mod-
elling process for the {[λ̃]}s spanned by the kth-rank carrier subspaces may be found
in tables 1, 2 or in the appendix. Section 6 summarises certain fundamental aspects
of the work, particularly in the context of recent interest in the roles of automorphic
(group) and more general networks in science.

The notation utilised throughout derives directly from those either of Wybour-
ne [68], or of Biedenharn and Louck – as subsequently extended to Liouville space
in [55] – or else corresponds to the NMR spin dynamics notation utilised by Sanctuary
and Halstead [45]; with exception of pulse sequence “COSY” [2], NMR jargon has
largely been avoided in this article. In particular, we would stress that the standard
terminology of group theory and algorithmic algebraic combinatorics pertaining to the
symmetric group, SFs and Yamanouchi chains is well-established and may be found
in the mathematical texts of Sagan [40], James and Kerber [29], or Kerber [34] or else
in Biedenharn and Louck [9,10]. Chen’s 1987 symmetry text [17], or the more recent
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monograph due to Sternberg [48], as well as Wybourne’s [68] standard mathematical
physics, all discuss various physical applications of symmetry properties, similar to
those utilised herein.

2. Symbolic combinatorial modelling underlying dual tensorial sets

On recognising the specialised nature of bipartite λ ` n Schur functions (SFs),
i.e. as representations of GLn groups, one introduces (utilising Butler’s notation [12],
which simply suppresses the leading n − µ terms, as redundant for known n-index)
SFs via {

µ̂
}
≡
{
̂n− µ,µ

}
and [µ] ≡ [n− µ,µ], where

{
0̂
}
≡ [0]; (11)

this initialises (specifically below for “even” n-indices) the specialised hierarchy of
irreps derived from bipartite SFs for i = µ integer, as in{

µ̂
}
≡ [0] + [1] + · · ·+ [i], ∀i < (n/2) to (12)

{
(̂n/2)

}
≡

(n/2)∑
i=0

1[i], (13)

the final bipartite-SF form. Such hierarchies for bipartite SFs constitute simply-
reducible (SR) decompositions [29,34,36,40] under Young’s rule (YR-III) (onto the
{[λ]} set). For the more general multipartite SFs, YR-III enumeration (in a non-SR
form) is a well-established part of (symbolic) algorithmic combinatorics [29,34–36,40].
From Butler and King’s discussions [12,13] of (alternative) subgroup subduction chains
of the GLn group and its (ordered) subgroups, one obtains the details of the (inter-
linked) group chains as

(G)Ln ⊃ On⊃On−1 ⊃ Sn ⊃ G, (14a)

· · · ⊃ (G)Ln−1⊃On−1 ⊃ Sn ⊃ G. (14b)

The idea of the n-indexed symmetric group being a subgroup of the GLn group is cen-
tral to the use of mappings onto restricted subspaces [68], as invoked here. Specifically
for exclusively bipartite SFP, the latter may be shown to take on further interesting SR
forms in the restricted subspace, see equations (19)–(22) below. This seems to have
been overlooked in the discrete mathematics literature, as restricted subspace tech-
niques were developed essentially by the atomic spectroscopy and theoretical physics
community.

In the present work, we are concerned with the additional consequence of utilising
certain restricted subspaces (RSS) for specific subgroups within some ordered hierarchy
derived from the general linear group. The subgroups of (G)Ln considered here lie
beyond those covered, either in Wybourne’s 1970 treatise [68] on atomic physics
applications, or else in [12,13]. For bipartite SF-products, one may recognise simpler
intermediate structures; these are in addition to the generalised Weyl–Schur isometries
for SFs on GLn, contrasted to the corresponding irreps on Sn space [48]. A specific
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form of this well-known isometry yields identical reduction coefficients over the sets
(fields) for SFs (GLn) and symmetric-group inner products (IPs), for SFs (irreps)
respectively, as in {

µ̂
}
⊗
{
µ̂′′
}
→
∑
µ′

Λ⊗,µ′
{
µ̂′
}

, (15)

[µ]⊗
[
µ′′
]
→
∑
µ′

Λ⊗,µ′
[
µ′
]
. (16)

Apart from its application to IPs, other isometries (e.g., those involving outer prod-
ucts) occur [48], as discussed in the appendix. On re-interpreting one aspect of equa-
tions (14) and (15) above (here again specifically for bipartite SFs and for sufficiently
high n-indexed groups), with ξ%ϕ (pairwise) signed integers for some particular SF
product on the RSS, it follows that

[µ]⊗
[
µ′′
]
→
({
µ̂
}
−
{̂(µ− 1)

})
⊗
({
µ̂′′
}
−
{ ̂(µ′′ − 1)

})
, or (17a)

→
∑

all poss. %ϕ pairs

(
(ξ%ϕ)

{
%̂
}
⊗
{
ϕ̂
})

(Sn)

→
∑

%ϕ pair decomp.

(ξ%ϕ)

{∑
µ′′′

1
{
µ̂′′′
}

(Sn)

}
, so (17b)

[µ]⊗
[
µ′′
]
→· · · →

(∑
µ′

Λ·,µ′
[
µ′
])

, (18)

where the original bipartite SFP SR properties are now overridden by the subsequent
ξ%ϕ (signed) small integers of the outer sum (over all %ϕ pairs), to yield the final
(non-SR) sets of composite reduction coefficients {Λ·,µ′}.

This two stage process is valuable, both from the viewpoint of its physics versus
mathematics correlation, as set out in equation (26) below, and because the individual
SF products now may be enumerated on the restricted Sn subgroup space. The latter
is simply reducible and the right-hand components of equations (19)–(22) constitute
subsets of the corresponding GLn sets of (inner) SFPs. Clearly, the preliminary form,
i.e. equation (17a) and the inner-most sum of the final step (17b) (now over p 6 22

part forms) are based on simple Young-rule (III) decompositions [34–36,40].
For the second stage above (i.e. equation (17b)) within the dimensionality con-

straints to the bipartite inner products, the specific mappings, i.e. as minimal SR sub-
sets of the overall GLn IP isometry properties, arise from the following Sn restricted
subspace decompositions:

{
1̂
}
⊗
{

1̂
}{

2̂
}
⊗
{

2̂
}{

3̂
}
⊗
{

3̂
}
→


{

1̂
}

+
{

1̂1
}{

2̂
}

+
{

1̂11
}

+
{

2̂2
}{

3̂
}

+
{

2̂11
}

+
{

2̂21
}

+
{

3̂3
}
 (RSS :Sn), (19)
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{

1̂
}
⊗
{

2̂
}{

1̂
}
⊗
{

3̂
}{

1̂
}
⊗
{

4̂
}{

1̂
}
⊗
{

5̂
}

→

{

1̂1
}

+
{

2̂1
}{

2̂1
}

+
{

3̂1
}{

3̂1
}

+
{

4̂1
}{

4̂1
}

+
{

5̂1
}

 (RSS :Sn), (20)


{

2̂
}
⊗
{

3̂
}{

2̂
}
⊗
{

4̂
}{

2̂
}
⊗
{

5̂
}
→


{

2̂1
}

+
{

2̂11
}

+
{

3̂2
}{

2̂2
}

+
{

3̂11
}

+
{

4̂2
}{

3̂2
}

+
{

4̂11
}

+
{

5̂2
}
 (RSS :Sn), (21)

({
3̂
}
⊗
{

4̂
}

. . .

)
→
({

3̂1
}

+
{

2̂21
}

+
{

3̂21
}

+
{

4̂3
}

. . .

)
(RSS :Sn). (22)

Here we note that the actual number of terms in the RSS-decomposed specialised
bipartite-SF inner products is precisely one more than the numerical argument of the
lower SF. Additional properties of bipartite SF inner products on RSS are discussed
in more detail elsewhere [63], utilising still higher n-indexed symmetric groups, so as
to include a wider range of maximal mappings.

As a final preliminary statement, we would stress the structured nature of “� dom-
inance ordering” [40] for SFs (omitting here the SF braces { } within the set, for
brevity) and [µ] irreps in the following pair of comparable forms:

L̂ †RS(SF/Sn)≡
{

0̂ 1̂ 2̂ 1̂1; 3̂ 2̂1 1̂11; 4̂ 3̂1 2̂2 2̂11 14; 5̂ 4̂1 3̂2 3̂11 2̂21 . . . ;

6̂ 5̂1 4̂2 4̂11 3̂3 3̂21
}

, (23a)

L†(Sn :� ord.)≡
{[

0̃
] [

1̃
] [

2̃
] [

1̃1
]
;
[
3̃
] [

2̃1
] [

1̃11
]
;
[
4̃
] [

3̃1
] [

2̃2
] [

2̃11
]
;
[
5̃
]
. . . ;[

6̃
]
. . .
[
3̃3
] [

3̃21
]}

, (23b)

introduced here on account of their use as right-hand column vectors in the
text.

3. Tensor rank-alone set formation on {|IM〉, . . . , |I0〉〉, . . . , |I −M〉〉} space

One writes for compactness:

∑
v

T k
′
(v) =

{∑
v

T kmax−i(v :Sn)
∣∣∣ 0 6 i 6 (n/2); k′ 6 kmax

}
, (24)
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Figure 1. The skew-diagonal sums (Zi) generating Liouvillian rank-alone tensorial subsets, as described
in section 3 of the text.

and recalls that the correspondence between Hilbert space spin states and the initial
forms of Sn irreps (SFs) takes the form∣∣I(M ≡ (n/2) − i

)〉
≡
∑
i

[i] ≡
{
î
}

, ∀i < n/2, (25)

to the maximal bipartite form.
On recalling the structure of the (schematic) Liouville space “generator” of fig-

ure 1, itself based on the nature of SF-IP decompositions on restricted space SFs, the
resultant (initial (minor)) skew-diagonal sums (Zi) of SF-IPs provide the Liouville
space structure. Since we are considering (in contrast to the original {|kqv〉〉} forms
of an earlier preliminary work [51]) the rank-alone tensorial sets on {k, v} subspaces,
it is necessary to invoke a recursive adjacent skew-diagonal-sum (or Zi) difference
formalism, or

for k′ = kmax − i:
∑
v

T k
′
(v) ≡ Zi −Zi−1, (26)

where these (minor) skew-diagonal sums are (in terms of geographic orientations) from
the SW-to-NE triangular subsets of these SFP terms.

Hence, one obtains the tensorial subset-to-restricted space SF mapping relation-
ship, given here with (on LHS) the decreasing rank specific subdimensionalities, re-
spectively of the n = 12, 20 Sn group tensorial subsets, for all maximal k > (n/2)
rank mappings, which are compatible with the use of λ ` n weak-partitional branching
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in SFP, or SF decompositions. Thus, in terms of RSS SF-decompositions over SF basis
as in equation (23a), one finds that



1

23

252

1748

8602

31878

96092

–





1

39

740

9100

81510

566618

3180572

. . .


:
∑
v

T k
′
(v)

≡



1 0 0 0;

1̄ 2 0 0;

0 1̄ 2 1;

0 1̄ 2̄ 1; 2 2 0;

0 0 1 0; 2̄ 0 1; 2 2 1 0 0;

0 0 1̄ 0; 0 0 1̄; 2̄ 0 1̄ 2 0; 2 2 2 0;

(0 0 0 0; 1 2̄ 0; 0 2̄ 2 1̄ 0; 2̄ 0 2̄ 2 1 0; 2 2 1 0 1)

. . . ; . . . ; . . . ; . . .


L̂RS , (27)

where the negative entries arise solely from the rank-alone construction, which recur-
sively subtracts just the full positive component SFPs of the preceeding k-rank Zi−1

result in the hierarchy – on proceeding in a stepwise manner from the maximal rank,
as set out in equation (26).

This matrix of SF-coefficients is based on the SR properties of specific bipartite
SF products, equations (19)–(22). The rank-alone tensorial subset dimensionality (on
the left in equation (27)) derives from the recursive combinatorial property

χ2n−i,i
12n (S2n) ≡

(
2n
i

)
−
(

2n
i− 1

)
. (28)

The full (spin-alone) tensorial set has a spatial dimensionality of
(2n
n

)
; this follows

directly from a further straightforward combinatorial identity. On utilising the full
range of single SF YR-III decompositions (in the weak part branching limit), one
obtains a mapping (for tensorial ranks) onto the {[λ̃]} irrep space of the Sn group.
Here again the entries are in terms of decreasing rank, with the dominance ordering
(over irreps) retained in the right-hand L(Sn) column-vector. Finally, as a specific
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example for the tensorial forms of the n = 12 index symmetric group (or as outer
portions of higher Sn>12 groups), one obtains the following overall maximal form:



i = 0
1
2
3
4
5

. . .


:
∑
v

T kmax−i(v) ≡



1 0 0 0;
1 2 0 0;
2 3 3 1;
2 5 5 3; 4 2 0;
3 6 9 4; 7 6 1; 5 3 1 0 0;
3 8 11 6; 13 10 1; 9 9 3 2 0; 6 4 2 0
(. . .)


L(Sn).

(29)
This concludes the essential details of the derivation of the full carrier space maps
down to k = (n/2) ≡ 6, for the n = 12 dual group.

4. Simple reducibility and subspatial partitioning

From the initial discussions of the structure of equation (6), Liouvillian carrier
space is known to be partitionable [53,55,60]. Thus, the distinct auxiliary labels (being
precisely n−2 (recoupling) labels, from an “n”-fold ki inner field) provide a structured
series of subsets mappings based on the underlying scalar invariants, with

∑
v

T k
′
(v :Sn) ≡ (. . .)v̄ + (. . .)v̄′ + · · · . (30)

It is this property which ensures the retention of SR property of SU(2)×Sn Liouville
space, as in [53,55,60]. Over irrep-basis set out in equation (23b), the initial v-term-
based matrix is given by

T kmax−i(v̄) ≡


1 0 0 0;
1 1 0 0;
1 1 1 1;
1 1 1 1; 1 1 0;
1 1 1 1; 1 1 1; 1 1 1 0 0;
1 1 1 1; 1 1 1; 1 1 1 1 0; 1 1 1 0
(. . .)



v̄

L(S12). (31)

The remaining SR subsets are suitable fragments of the residual matrix; for the present
high k-rank weak-branching case, this further (for compactness of the presentational
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Table 1
Illustrative enumeration of T k dual tensor decompositions: the case of Z4−Z3 skew-diagonal

sum difference, from lefthand (NW) corner of figure 1.

Dimension Coefficients/{[λ̃]} [3] [21] [111] [4] [31] [22]

{2̂2} → 1 2 3 1; 2 2 0; 1 1 1
2{3̂1} 2 4 4 2; 4 2 0; 2 2
2{4̂} 2 2 2 0; 2 ; 2

{1̂11} 1 3 3 3; 1 2 1;
2{2̂1} 2 4 4 2; 2 2

{2̂} 1 1 1 0;

10626
∑

= 9 16 17 8; 11 8 1; 5 3 1

2024 2({2̂1} + {3̂} + {1̂1}) = 6 10 8 4; 4 2

8602 ∆ = 3 6 9 4; 7 6 1; 5 3 1

Table 2
A further enumerative decomposition which illustrates the case of Z5 −Z4.

Dimension Coefficients/{[λ̃]} [4] [31] [22] [211] [5] [41] [32]

2{3̂2} → 2 4 6 2; 6 4 0; 4 4 2 0 0; 2 2 2

2{4̂1} 2 4 4 2; 4 2 0; 4 2 0 0 0; 2 2
2{5̂} 2 2 2 0; 2 0 0; 2 0 0 0 0; 2

2{2̂11} 2 6 8 6; 6 8 2; 2 4 2 2 0;

2{3̂1} 2 4 4 2; 4 2 0; 2 2 0 0 0;
2{2̂1} 2 4 4 2; 2 2 0;

42504
∑

= 12 24 28 14; 24 18 2; 14 12 4 2 0; 6 4 2

10626 Zi−1 = 9 16 17 8; 11 8 1; 5 3 1 0 0;

31878 ∆ = 3 8 11 6; 13 10 1; 9 9 3 2 0; 6 4 2

layout herein) composite component mapping is given by

v̄′′,...∑
v=v̄′

T kmax−i(v) ≡



0 0 0 0;
0 1 0 0;
1 2 2 0;
1 4 4 2; 3 1 0;
2 4 8 3; 6 5 0; 2 4 0
2 7 10 5; 12 9 0; 8 8 2 1 0; 5 3 1 0
(. . .)



v̄′,v̄′′,...

L. (32)

Naturally, each of the SR component submatrices is associated with a specific v-
invariant derived from hierarchical group chain [17,49,60] structures, as developed in
the following paper [62] which treats the complete {[λ̃] | p 6 4 part : S12} irrep set.
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The derivation of a specific k-rank T k(v) versus {[λ̃]} map, i.e. as an example of
one specific row of equation (29), follows directly from equation (27) and from the use
of YR-III rule; for details the reader is referred the enumerations given respectively
in tables 1 and 2, where again the negative components are those derived from a
preceeding tensorial subset in the recursive process, this being just the respective
postive Zi−1 (sum) contribution (i.e. without the earlier subtraction being applied).

5. Discussion

It has been convenient to focus on the higher rank properties with their maximal
forms of bipartite SF inner products, under the previously stated λ ` n weak-branching
criteria. The other subset rank-alone mappings, i.e. those for which k 6 n/2, are more
tedious to calculate, since their component forms are no longer generalised (higher
n-index independent) inner SFP mappings, neither do they exhibit analogous forms to
equations (19)–(22). However, proofs of both the k > n/2 and, rather more tediously,
the k 6 n/2 forms of tensorial components may be obtained in principle via the
SYMMETRICA symbolic computing package [35] and its associated S12 (or S20)
group algebras. The technique adopted here has allowed a fuller realisation of the
H̃v-based SR properties of SU(2)×Sn dual group tensorial sets of value in treating, e.g.,
spin-(1/2) ensemble NMR dynamics, as they arise in evolution, coherence transfer, or
intracluster relaxation phenomena.

These SR properties arise as a result of factorisation associated with the auxiliary
v labels, and hence SI terms, which are now an explicit feature of the projective
mapping, as compared to their ancillary role in Biedenharn and Louck state-space
formalism [9,10]. It should be noted that the tensorial subsets were obtained utilising
almost exclusively the symmetric group algebra – the usage of unitary group aspects
here was limited specifically to defining the range of parts (p) for the λ ` n forms. The
role of the symmetric group is central also in defining the sub-spatial dimensionalities,
via the appropriate χ[2n−i,i]

12n (S2n) characters. The Sn-democratic recoupling associated
with the realisation of scalar invariants (SIs) is the subject of a following paper [62],
which utilises the properties of the Yamanouchi chain to resolve a major analytic
weakness inherent in many-body (democratic) recoupling problems.

Whilst the democratic approach to recoupling yields an analytic way of treating
one of the strictly few-body cases, via the explicit algebraic quantum physics first given
by Lévy-Leblond and Lévy-Nahas [37] in l965, the generalised problem is not tractable
in terms of conventional analytic forms for theoretical reasons. A proof of this intrinsic
intractability, i.e. for highly degenerate systems based on descriptions involving mul-
tiple scalar invariants, was given via group theory initially by Galbraith [23]. Little
progress seemed possible thereafter, at least until the Ṽ forms of v labels were refor-
mulated in terms of the combinatorially-based Sn group YGC chain process. These
route-maps, essentially onto [2](S2), are discussed in detail in the following paper [62].

As well as allowing a viable approach to coherence transfer of a small num-
ber of [A]n-type spin systems [38], it is noted that the dual group viewpoint al-
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lows one to define symmetry breaking in NMR, as being associated [38] with, e.g.,
the φ1

1(11), or more generally, the φn−1
n−1(11, . . . , 1n)) coherences, which are inherently

disallowed for evolution under the zeroth-order Liouvillian.
Studies of evolution involving penultimate maximal quantum processes of mul-

tispin systems, under scalar coupling, or in particular dipolar, Liouvillians yield much
physical insight, as given, e.g., in a recent liquid crystal media NMR report [14] de-
scribing phase-selective specific multiquantum COSY NMR of [A]4(S4 ↓ D2) systems.
This succeeded in extending Avent’s technique [2], which was originally applied to an
isotopic dipolar A[B]3 spin system (in liquid-crystal media) in the 1980s. However,
one should note that the discrimination employed therein does not allow for pairs of
distinct highly degenerate [λ̃]s to be distinguished directly a priori, i.e. where they
share the same q (multiquantum) manifold. Hence this early pulse technique employed
in [14] may be of somewhat limited value in NMR applications, where the original
intention is to identify spectral features belonging to different highly degenerate irreps
in similar q subspaces under (say) some Sn>6-related group. To date, the further inter-
esting question of correlating NMR features with specific invariants has not received
much attention, in part for the reasons indicated above. Since the high-resolution liquid
state NMR community has tended to avoid the use of recoupled tensorial formalisms
in treating the spin dynamics of multispin systems, by choosing instead to focus on
techniques involving product (or generalised unitary projective) bases. Work involv-
ing these bases frequently neglects the recoupling aspects inherent in NMR altogether.
Except for the pedagodical Hilbert space discourse on the number of independent SIs,
due to Corio [20], little mention has been made of SIs in modern NMR; the explicit
role of multiple SIs over a Liouvillian carrier space has not been considered by others
previously, and certainly not in the detailed form addressed here and in the following
work [62].

6. Concluding remarks

The dynamical formalisms of NMR based on dual-group tensorial sets are in-
valuable in understanding the physical role of scalar invariants as auxiliary terms.
Further, the completeness of the sets associated with projective mapping provides di-
rect insight into dual group transformational properties of Liouville space. Many of
the general techniques invoked here, such as those based on Schur functions, stress
the value in molecular physics of the (SU(2)×)Sn group [6,26,39,50]. The concept
of simple reducibility [53,55,60] is of special importance under this dual group, as
shown previously in [53,55]. The inclusion of other group theoretical approaches –
including those frequently associated with other specific areas of physics [50] – often
proves helpful. Here, it has been shown that theoretical techniques, based on SFs
from atomic [12,13,68] and particle physics [48,49], are also of pertinence to chemical
physics and to modern-day NMR [45,60,62].

Even leaving aside the group structural aspects of equation (14), the necessity of
retaining the Sn group in NMR, as in [55], is clear from the involvement of wreath-
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product groups in molecular dynamics, involving spins, i.e. under the so-called “fea-
sibility group”), as explored by Longuet-Higgins [39] and (more recently) by Bala-
subramanian [6]. Explicit use of Sn ↓ G natural embeddings in CNP studies are now a
well-established aspect for the nuclear spin statistical weighting of ro-vibrational spec-
troscopy [3–5,8,26,56,57,66]. The relationship of such processes to other common
subductions (i.e. those based on the orthogonal group) [1,11,16,25,27] comes directly
from equation (14a). The distinction between spin-based CNP presentations [5,8,26,66]
and purely vibrational analyses of cage structures [16,27] is clear from the nature of
the constrained total CNP/spin-vibrational product symmetry and is well-established
in terms of chemical applications in the spectroscopic literature [4,11].

The techniques presented here for deriving the inherent structure of dual tensorial
sets goes significantly beyond the restricted (circa) 4- or 5-fold tensorial sets, based
on the earlier (⊗SU(2))n notation due to Coope [22], or indeed that of other tensorial
approaches, such as that due to Hughes [28,69]. Within the context of Liouville space
itself being a product space, the additional symmetry chain

SO(5) ⊃ SU(2)× SU(2)

is of interest to NMR spin dynamics, because it is directly related to the Hilbert space
viewpoint adopted by Corio [20].

The use of dual group carrier space based techniques allows highly degener-
ate systems (not necessarily restricted to NMR) to be treated via democratic recou-
pling [55,60,62] in a way that is conceptually insightful and compatible with other
projective techniques [64,65], and also (to some extent) with theories associated with
networks, whether these are based on equivalence hierarchies and automorphisms [3],
or else via interlink modelling which may be found in descriptions of “small-world”
networks [67]. For higher n-fold ensembles, there is clearly a disjunction between
conventional tree-based graphical techniques [33,41] and Sn projective techniques, in
regard to transformations between the two formalisms for multiple scalar invariant
problems; this is not as widely appreciated in the physical science as it deserves to
be. As a well-defined application of symbolic algebraic combinatorics to chemical
physics, in the context of [53,55,60] and related articles [62–64], the work could well
be of interest outside the confines of NMR spin dynamics.
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Appendix

It should be noted that the square construction of figure 1 is based on each of
the component quadrants, (−−), (−+), (+−), (++), being a Latin square.

Isometry between GLn, Sn groups also applies to outer products derived by
Littlewood–Richardson rule with its lattice permutation criteria. Details may be found
in the appendix C material of Sternberg’s text [48] and in sections I, II of the dis-
cussion of “splitting the square” (outer plethysm formation) recently given by Carré
and Leclerc [15]. Explicit [λ]⊗ [λ′] IP decompositions using the techniques of equa-
tions (12)–(15) and the Sn ⊗ Sn → Sn for n = 12, and 20 6 n 6 24 symbolic
computation with SYMMETRICA has been presented in our recent work [60].

Since tabulations of simple YR-III SF decompositions (onto {[λ]} space) have
been extensively treated in earlier work [54,58,59,61,63], and in any case the algorith-
mic form [40] is particularly straightforward, these aspects are not set out here. Suffice
it to say that the maximal forms of such enumerations have been utilised for YR-III,
as well as for the restricted space SF product mappings. Further detailed discussion
of notation, and of some of the historical background on the earlier mathematical con-
tributions (in terms of (outer) plethysms) of Murnaghan and of Littlewood (i.e. from
circa 1936 up to 1958), may be found in Butler’s work [12,48] from the 1970s.
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